近期,華為AI算法團隊表示在人工智能領域取得顯著突破,研究併發表一種創新的大模型 KV Cache 壓縮算法,稱為「RazorAttention」。tvb now,tvbnow,bttvb J* R( C2 m. z& J' v7 Q8 i
9 L9 |1 a4 n8 Q% P公仔箱論壇
$ P( _1 U, o6 J' q/ [2 F公仔箱論壇7 O" B8 h# R/ _# [* B q3 @' G$ M) R
新算法具有卓越的性能表現,可以有效節省高達 70%的大模型推理 RAM 佔用,AI 大模型提供更多的空間,提供強有力的支援。
( o! J- h. N/ W1 g4 Y 目前相關論文《RazorAttention: Efficient KV Cache Compression Through Retrieval Heads》已被深度學習領域國際頂級會議 ICLR 2025 收錄,可見其重要性。* U$ B) t7 B( Q8 U! I3 L& `2 t
華為表示,RazorAttention 是業界首個基於 Attention 可解釋性的離線靜態 KV Cache 壓縮算法,打破一直以來 AI 大模型長序列 KV Cache 壓縮不理想的硬傷,減少設備負擔,提高計算速度。
) j6 y" W {9 H( @: B* ]( Etvboxnow.comRazorAttention 是通過檢索頭的設定,保證上下文中重要且主要的信息保留,且在保持高精度(誤差小於1%)的前提下,實現靜態有效壓縮最大70% 的 KV Cache RAM 佔用,大大減少 AI 大模型推理的成本。tvb now,tvbnow,bttvb% l" G& w2 a5 i/ m _
值得一提的是,目前 RazorAttention 算法已實現產品化,並集成在昇騰 MindIE/MindStudio,支援主流 8K~1M 長序列 KV Cache 壓縮,在 32K 以上場景增量吞吐提升20%+。 |