返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。
) c' v8 Z, q% h3 {
& K2 H' D4 s! o7 L4 C5 Vtvb now,tvbnow,bttvb  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: 公仔箱論壇, c, h6 N" d3 t4 s! N+ f, p9 B9 E, _
3 P2 C' B- b4 \+ f2 D( B- d4 @9 ]
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。 公仔箱論壇: J. m1 P  |; |+ W! c! c
tvboxnow.com2 e; ~  v. p% R  \* W/ Y
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
7 g$ Z+ m, Q& i/ Mtvb now,tvbnow,bttvb
0 I8 F- W3 i% o3 w( W' ytvb now,tvbnow,bttvb  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
8 x  f2 j' W5 ]& P7 etvboxnow.com% m% U. p, c9 M: L9 H. ^6 a- h
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。 + A) {8 n; ?, H  d8 D
& A4 F1 k6 \; ?$ \3 C0 f2 f. Z
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。tvb now,tvbnow,bttvb" L- l: \2 e3 t+ ?& p9 x

/ ~  ^& Q! _& x& Gtvboxnow.com  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 tvboxnow.com/ N( L3 r: z2 W9 o3 L7 v
公仔箱論壇4 V  ]/ n7 Y! `# ?: a$ P% z5 }# L7 e9 L
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
, X! F, }* e  X/ C9 \7 HTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。5 `1 n6 D) o* j1 D5 \3 q
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。8 ~1 D1 N, l* V& i3 R5 R& o4 N

- r" I! g9 O7 w- s" i2 A# w; htvb now,tvbnow,bttvb  这时,可以称第二次了。这次称后可能出现的是三种情况: TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。* q* j% q( q1 H7 s
) D/ o) y* H: A
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
  ^. T) O# [4 h4 j% xtvboxnow.com* v, J2 g3 n: C' c
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。* m: @3 ^! l* q. u4 v1 D  \
7 {5 ~- Z# r' R2 q  Q7 C
  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。 ( x1 @1 s3 A* e

  P: E; p  _8 E+ Ttvboxnow.com  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。公仔箱論壇& X# |- j% D- N- f
* I/ f& E+ }1 w5 i5 L6 m
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 tvb now,tvbnow,bttvb5 R" r) J3 ^( N! B* S3 g1 f) \

' H5 G% b5 T3 V: G/ e( N# ~$ P  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。 公仔箱論壇  D2 n. C9 _3 J  H

3 i" g* \5 k) J/ T5 \' m+ j$ aTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害
6 g1 v$ n* X# a$ Q公仔箱論壇3 }$ B3 t+ g) g/ e3 M
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表